4.6 Article

Testing and recommending methods for fitting size spectra to data

Journal

METHODS IN ECOLOGY AND EVOLUTION
Volume 8, Issue 1, Pages 57-67

Publisher

WILEY
DOI: 10.1111/2041-210X.12641

Keywords

abundance size spectrum; biomass size spectrum; bounded power-law distribution; ecosystem approach to fisheries; ecosystem indicators; individual size distribution; truncated Pareto distribution

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. UK's Natural Environment Research Council
  3. Department for Environment, Food and Rural Affairs [NE/L003279/1]

Ask authors/readers for more resources

The size spectrum of an ecological community characterizes how a property, such as abundance or biomass, varies with body size. Size spectra are often used as ecosystem indicators of marine systems. They have been fitted to data from various sources, including groundfish trawl surveys, visual surveys of fish in kelp forests and coral reefs, sediment samples of benthic invertebrates and satellite remote sensing of chlorophyll. Over the past decades, several methods have been used to fit size spectra to data. We document eight such methods, demonstrating their commonalities and differences. Seven methods use linear regression (of which six require binning of data), while the eighth uses maximum likelihood estimation. We test the accuracy of the methods on simulated data. We demonstrate that estimated size-spectrum slopes are not always comparable between the seven regression-based methods because such methods are not estimating the same parameter. We find that four of the eight tested methods can sometimes give reasonably accurate estimates of the exponent of the individual size distribution (which is related to the slope of the size spectrum). However, sensitivity analyses find that maximum likelihood estimation is the only method that is consistently accurate, and the only one that yields reliable confidence intervals for the exponent. We therefore recommend the use of maximum likelihood estimation when fitting size spectra. To facilitate this, we provide documented R code for fitting and plotting results. This should provide consistency in future studies and improve the quality of any resulting advice to ecosystem managers. In particular, the calculation of reliable confidence intervals will allow proper consideration of uncertainty when making management decisions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available