4.5 Article

Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno's model

Journal

EUROPEAN PHYSICAL JOURNAL PLUS
Volume 131, Issue 1, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/i2016-16016-8

Keywords

-

Ask authors/readers for more resources

The heat and mass transport of a nanofluid thin film over an unsteady stretching sheet has been investigated. This is the first paper on nanofluid thin film flow caused by unsteady stretching sheet using Buongiorno's model. The model used for the nanofluid film incorporates the effects of Brownian motion and thermophoresis. The self-similar non-linear ordinary differential equations are solved using Maple's built-in BVP solver. The results for pure fluid are found to be in good agreement with the literature. Present analysis shows that free surface temperature and nanoparticle volume fraction increase with both unsteadiness and magnetic parameters. The results reveal that effect of both nanofluid parameters and viscous dissipation is to reduce the heat transfer rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available