4.7 Article

Epithelial-to-Mesenchymal Transition Defines Feedback Activation of Receptor Tyrosine Kinase Signaling Induced by MEK Inhibition in KRAS-Mutant Lung Cancer

Journal

CANCER DISCOVERY
Volume 6, Issue 7, Pages 754-769

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/2159-8290.CD-15-1377

Keywords

-

Categories

Funding

  1. Scientific Research on Innovative Areas Integrative Research on Cancer Microenvironment Network [22112010A01]
  2. Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
  3. AstraZeneca RD Grant Award
  4. Kobayashi Foundation for Cancer Research
  5. NCI Transition Career Development Award [K22CA175276]
  6. American Lung Association Lung Cancer Discovery Award
  7. George and Lavinia Blick Research Fund
  8. [26830105]
  9. [21390256]

Ask authors/readers for more resources

KRAS is frequently mutated in lung cancer. Whereas MAPK is a well-known effector pathway of KRAS, blocking this pathway with clinically available MAPK inhibitors is relatively ineffective. Here, we report that epithelial-to-mesenchymal transition rewires the expression of receptor tyrosine kinases, leading to differential feedback activation of the MAPK pathway following MEK inhibition. In epithelial-like KRAS-mutant lung cancers, this feedback was attributed to ERBB3-mediated activation of MEK and AKT. In contrast, in mesenchymal-like KRAS-mutant lung cancers, FGFR1 was dominantly expressed but suppressed by the negative regulator Sprouty proteins; MEK inhibition led to repression of SPRY4 and subsequent FGFR1-mediated reactivation of MEK and AKT. Therapeutically, the combination of a MEK inhibitor (MEKi) and an FGFR inhibitor (FGFRi) induced cell death in vitro and tumor regressions in vivo. These data establish the rationale and a therapeutic approach to treat mesenchymal-like KRAS-mutant lung cancers effectively with clinically available FGFR1 and MAPK inhibitors. SIGNIFICANCE: Adaptive resistance to MEKi is driven by receptor tyrosine kinases specific to the differentiation state of the KRAS-mutant non-small cell lung cancer (NSCLC). In mesenchymal-like KRAS-mutant NSCLC, FGFR1 is highly expressed, and MEK inhibition relieves feedback suppression of FGFR1, resulting in reactivation of ERK; suppression of ERK by MEKi/FGFRi combination results in tumor shrinkage. (C) 2016 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available