4.7 Article

ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia

Journal

CANCER DISCOVERY
Volume 6, Issue 7, Pages 770-783

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/2159-8290.CD-16-0058

Keywords

-

Categories

Funding

  1. NIH [GM106416, GM079641, CA116606]
  2. German Research Foundation (Deutsche Forschungsgemeinschaft) [DU 1287/2-1]
  3. Children's Health Initiative of the Packard Foundation
  4. California Institute for Regenerative Medicine
  5. Child Health Research Institute

Ask authors/readers for more resources

Numerous studies in multiple systems support that histone H3 lysine 36 dimethylation (H3K36me2) is associated with transcriptional activation; however, the underlying mechanisms are not well defined. Here, we show that the H3K36me2 chromatin mark written by the ASH1L histone methyltransferase is preferentially bound in vivo by LEDGF, a mixed-lineage leukemia (MLL)-associated protein that colocalizes with MLL, ASH1L, and H3K36me2 on chromatin genome wide. Furthermore, ASH1L facilitates recruitment of LEDGF and wild-type MLL proteins to chromatin at key leukemia target genes and is a crucial regulator of MLL-dependent transcription and leukemic transformation. Conversely, KDM2A, an H3K36me2 demethylase and Polycomb group silencing protein, antagonizes MLL-associated leukemogenesis. Our studies are the first to provide a basic mechanistic insight into epigenetic interactions wherein placement, interpretation, and removal of H3K36me2 contribute to the regulation of gene expression and MLL leukemia, and suggest ASH1L as a novel target for therapeutic intervention. SIGNIFICANCE: Epigenetic regulators play vital roles in cancer pathogenesis and represent a new frontier in therapeutic targeting. Our studies provide basic mechanistic insight into the role of H3K36me2 in transcription activation and MLL leukemia pathogenesis and implicate ASH1L histone methyltransferase as a promising target for novel molecular therapy. (C) 2016 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available