4.6 Article

Using optical trap to measure the refractive index of a single animal virus in culture fluid with high precision

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 7, Issue 5, Pages 1672-1689

Publisher

Optica Publishing Group
DOI: 10.1364/BOE.7.001672

Keywords

-

Funding

  1. NIH [1DP2OD008693-01]
  2. NSF CAREER [CHE1149670]
  3. March of Dimes Foundation [5-FY10-490]

Ask authors/readers for more resources

The refractive index (RI) is a fundamental parameter of materials that can be used to distinguish and sort materials of different nature. Although the RI of a virus is required for many optics-based biosensing applications, RIs of animal viruses have never been measured. Here we have developed a technique that can measure the RI of individual viruses in aqueous media with high precision. This technique is based on optical trapping of single virions and works by relating the size and RI of a single virus to the stiffness of an optical trap. We have derived an analytic expression to quantitatively describe the optical trapping of these particles. We have validated this equation using nanoparticles of known RI, and measured the RI of individual human immunodeficiency viruses type-1, which yielded a value of 1.42 at 830 nm with less than 2% coefficient of variation. This value is much lower than the RI typically assumed for viruses, but very close to that of 2.0 M sucrose solution in water. To the best of our knowledge, this is the first report on the experimental measurement of the RI for a single animal virus in aqueous media. This technique does not require prior knowledge on the diameter of the nanoparticles, and can be applied to other viruses or nanoparticles for accurate measurement of RI that is critical for the label-free detection of these particles in various settings. (C) 2016 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available