4.1 Article

Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications

Journal

BIOINTERPHASES
Volume 11, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1116/1.4944061

Keywords

-

Funding

  1. Fund for Teaching, Research and Extension Support (FAEPEX) from Univ. of Campinas (UNICAMP) [653/13]
  2. State of Sao Paulo Research Foundation (FAPESP) [2013/08451-1]
  3. National Council of Technological and Scientific Development (CNPq) [442786/2014-0, 304908/2015-0]

Ask authors/readers for more resources

In this study, the authors tested the hypotheses that plasma electrolytic oxidation (PEO) and glow-discharge plasma (GDP) would improve the electrochemical, physical, chemical, and mechanical properties of commercially pure titanium (cpTi), and that blood protein adsorption on plasma-treated surfaces would increase. Machined and sandblasted surfaces were used as controls. Standard electrochemical tests were conducted in artificial saliva (pHs of 3.0, 6.5, and 9.0) and simulated body fluid. Surfaces were characterized by scanning electron microscopy, energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, atomic force microscopy, x-ray diffraction, profilometry, Vickers microhardness, and surface energy. For biological assay, the adsorption of blood serum proteins (i.e., albumin, fibrinogen, and fibronectin) was tested. Higher values of polarization resistance and lower values of capacitance were noted for the PEO and GDP groups (p < 0.05). Acidic artificial saliva reduced the corrosion resistance of cpTi (p < 0.05). PEO and GDP treatments improved the surface properties by enrichment of the surface chemistry with bioactive elements and increased surface energy. PEO produced a porous oxide layer (5-mu m thickness), while GDP created a very thin oxide layer (0.76-mu m thickness). For the PEO group, the authors noted rutile and anatase crystalline structures that may be responsible for the corrosion barrier improvement and increased microhardness values. Plasma treatments were able to enhance the surface properties and electrochemical stability of titanium, while increasing protein adsorption levels. (C) 2016 American Vacuum Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available