4.6 Article

The influence of pre-treatment of Spartium junceum L. fibres on the structure and mechanical properties of PLA biocomposites

Journal

ARABIAN JOURNAL OF CHEMISTRY
Volume 12, Issue 4, Pages 449-463

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.arabjc.2016.08.004

Keywords

Fibres; Polymer-matrix composites (PMCs); Mechanical properties; Mechanical testing

Funding

  1. British Scholarship Trust
  2. Croatian Science Foundation under project ADVANCETEX: Advanced textile materials by targeted surface modification [9967]

Ask authors/readers for more resources

Different chemical pre-treatments of Spartium junceum L. fibres using alkali (NaOH), nanoclay (MMT) and Citric acid (CA) with the aim of producing biodegradable composite material are discussed. As environmental requirements in processing technologies have been higher in recent years, the Polylactic acid (PLA) is used in this research as a matrix, due to its renewability, biodegradability and biocompatibility. Biocomposites are prepared by reinforcing PLA with randomly oriented, short Spartium junceum L. fibres in order to increase material strength. The effects of different pre-treatments of Spartium junceum L. fibres on the mechanical properties of final biocomposite material are examined. Fibre tenacity is studied using Vibroscop and Vibrodyn devices. Tensile strength of biocomposite material was measured on the universal electromechanical testing machine Instron 5584. The results indicate that biocomposites reinforced with fibres modified with MMT and CA show upgraded mechanical properties of the final composite material in comparison with the composite materials reinforced with referenced (nontreated) fibres. Infrared spectra of tested fibres and biocomposites were determined with Fourier transform infrared spectroscopy using Attenuated total reflection (FT-IR ATR) sampling technique and the influence of fibre modifications on the fibre/polymer interfacial bonding was investigated. The interface of Spartium/PLA composites was observed with scanning electron microscope (SEM) and it was clearly visible that biocomposites reinforced with fibres modified by MMT and CA showed better interaction of fibres and matrix. (C) 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available