4.6 Article

Oleylamine surface functionalized FeCoyFe2-yO4 (0.0 ≤ y ≤ 1.0) nanoparticles

Journal

ARABIAN JOURNAL OF CHEMISTRY
Volume 12, Issue 8, Pages 4971-4981

Publisher

ELSEVIER
DOI: 10.1016/j.arabjc.2016.10.010

Keywords

Magnetic properties; Fe3O4, Co3+ substitution; Oleylamine; Cation distribution; Mossbauer analysis

Funding

  1. Turkish Research Council (TUBITAK)

Ask authors/readers for more resources

In this study, oleylamine (OAm) capped FeCoyFe2-yO4 (0.0 <= y <= 1.0) nanocomposites (NCs) were prepared via a polyol route. Effect of Co3+ ion substitution on structure, morphology and magnetic properties of Fe3O4 nanoparticles was investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analyzer (TGA), scanning and transmission electron spectroscopy (SEM and TEM), vibrating sample magnetometer (VSM) and Mossbauer analyzer. All XRD patterns show the single phase spinel ferrite without any impurity. The crystallite size of the samples is within the range of 7.1-21.7 nm. FT-IR analysis showed that all products were successfully packed by OAm. Both SEM and TEM results confirmed that products have spherical morphology with small agglomeration. When Co3+ ions were substituted to the Fe3O4, Ms continued to decrease up to Co3+ content of y = 0.4. It was reported that Co3+ ions prefer to replace Fe2+ ions on octahedral side up to some concentration. Although the Mossbauer spectra for the all samples were composed of magnetic sextets, superparamagnetic particles are also formed for FeCo0.6Fe1.4O4, FeCo0.8Fe1.2O4 and FeCoFe2O4 samples. (C) 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available