4.8 Article

Multifunctional Manganese Ions Trapping and Hydrofluoric Acid Scavenging Separator for Lithium Ion Batteries Based on Poly(ethylene-alternate-maleic acid) Dilithium Salt

Journal

ADVANCED ENERGY MATERIALS
Volume 7, Issue 3, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201601556

Keywords

acid scavengers; chelating agents; Li-ion batteries; Mn dissolution; separators

Funding

  1. Israel Science Foundation, ISF

Ask authors/readers for more resources

Manganese dissolution from positive electrodes seriously reduces the life of Li-ion batteries, due to its detrimental impact on the passivation of negative electrodes. A novel multifunctional separator incorporating inexpensive mass-produced polymeric materials may dramatically increases the durability of Li-ion batteries. The separator is made by embedding the poly(ethylene-alternate-maleic acid) dilithium salt polymer into a poly(vinylidene fluoride-hexafluoropropylene) copolymer matrix. LiMn2O4-graphite cells comprising a 1 m LiPF6 solution in ethylene carbonate plus dimethyl carbonate (1:1 v/v) and the functional separator retain 31% and 100% more capacity than baseline cells with plain commercial separators after 100 cycles at C/5 rate, respectively, at 30 and 55 degrees C. Analyses of cycled cells indicate greatly reduced Mn contamination of the graphite negative electrodes and almost no irreversible structural change in the LiMn2O4 positive electrodes from cells containing the functional separator. The Mn amount in the graphite electrodes from cycled cells with functional separators is approximate to 80% lower than in the graphite electrodes from cycled baseline cells. Mn ions are found in the functional separators but not in baseline (plain) separators from cycled cells. Finally, it is shown that the reported performance improvements stem from the ability of the novel separator to chelate Mn ions and to scavenge trace HF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available