4.8 Article

Critical Impact of Hole Transporting Layers and Back Electrode on the Stability of Flexible Organic Photovoltaic Module

Journal

ADVANCED ENERGY MATERIALS
Volume 7, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201601289

Keywords

-

Funding

  1. New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Ministry of Trade, Industry & Energy, Republic of Korea [20163010012200]
  2. National Research Foundation of Korea - Korean Government (MSIP)

Ask authors/readers for more resources

Properties of hole transporting layers (HTLs) and back electrode are very critical to the stability of inverted bulk heterojunction organic photovoltaic (OPV) modules. Here, various deposition methods for back electrodes and materials of HTLs are examined by applying to inverted organic solar cells with a structure of indium tin oxide/ZnO/photoactive layer/poly(3,4-ethy-len-edioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/Ag. The experiment is performed on encapsulated modules with flexible barrier films under accelerated conditions. The OPV modules with screen-printed Ag electrodes are shown to be electrically unstable with a reduction of the current density under damp heat condition at 85 degrees C/85% RH. Optical images for the active layer/PEDOT: PSS interface reveal that a reaction between the solvent from the Ag electrode and the underlying layers is the major cause for the degradation. In comparison with materials of the HTLs, the PEDOT:PSS layer shows low stability compared to the MoO3 layer under the accelerated conditions. Unusual chemical changes in the PEDOT:PSS film are observed through X-ray photoelectron spectroscopy and this is further addressed by correlating the stability of the OPV devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available