4.8 Article

In Situ Spectroscopic Study of CO2 Electroreduction at Copper Electrodes in Acetonitrile

Journal

ACS CATALYSIS
Volume 6, Issue 4, Pages 2382-2392

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.5b02543

Keywords

carbon dioxide; electroreduction; organic solvents; Cu electrodes; acetonitrile

Funding

  1. Bayer MaterialScience/Covestro
  2. The Netherlands Organization for Scientific Research (NWO)

Ask authors/readers for more resources

The electrochemical conversion of carbon dioxide (CO2) into valuable compounds is a promising route toward the valorization of this molecule of high environmental impact. Yet, an industrial process involving CO2 electroreduction is still far from reality and requires deep and fundamental studies for a further understanding and better development of the process. In this work, we describe in situ spectroelectrochemical studies based on Fourier transform infrared spectroscopy and surface-enhanced Raman spectroscopy of the CO2 reduction in acetonitrile solutions at copper electrodes. The influence of factors such as the water content and the supporting electrolyte on the reaction products were evaluated and compared to products obtained on metal electrodes other than Cu, such as Pt, Pb, Au, Pd, and Ag. The results show that at Cu electrodes in acetonitrile containing small amounts of water, the main reaction products from CO2 reduction are carbonate, bicarbonate, and CO. The formation of CO was observed at less-negative potentials than the formation of (bi)carbonates, and the formation of carbonate and bicarbonate species appears to be the result of a reaction with electrochemically generated OH- from water reduction. In general, our experiments show the sensitivity of the CO2 reduction reaction to the presence of water, even at the residual level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available