4.8 Article

Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid

Journal

ACS CATALYSIS
Volume 6, Issue 6, Pages 3442-3451

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b00476

Keywords

nitrogen-doped carbon; single-atom catalysts; hydrogen production; formic acid; renewable biomass

Funding

  1. Russian Science Foundation [16-13-00016]
  2. Earth and Natural Sciences (ENS) Doctoral Studies Programme - Higher Education Authority (HEA) through the Programme of Research at Third Level Institutions - European Regional Development Fund (ERDF)
  3. Russian Science Foundation [16-13-00016] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Formic acid is a valuable chemical derived from biomass, as it has a high hydrogen-storage capacity and appears to be an attractive source of hydrogen for various applications. Hydrogen production via formic acid decomposition is often based on using supported catalysts with Pt-group metal nanoparticles. In the present paper, we show that the decomposition of the acid proceeds more rapidly on single metal atoms (by up to 1 order of magnitude). These atoms can be obtained by rather simple means through anchoring Pt-group metals onto mesoporous N-functionalized carbon nanofibers. A thorough evaluation of the structure of the active site by aberration-corrected scanning transmission electron microscopy (ac-STEM) in high-angle annular dark field (HAADF) mode and by CO chemisorption, X-ray photoelectron spectroscopy (XPS), and quantum chemical calculations reveals that the metal atom is coordinated by a pair of pyridinic nitrogen atoms at the edge of graphene sheets. The chelate binding provides an ionic/electron-deficient state of these atoms that prevents their aggregation and thereby leads to an excellent stability under the reaction conditions. Catalysts with single atoms have also shown very high selectivity. Evidently, the findings can be extended to hydrogen production from other chemicals and can be helpful for improving other energy-related and environmentally benign catalytic processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available