4.8 Article

Performance, Structure, and Mechanism of ReOx-Pd/CeO2 Catalyst for Simultaneous Removal of Vicinal OH Groups with H2

Journal

ACS CATALYSIS
Volume 6, Issue 5, Pages 3213-3226

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b00491

Keywords

heterogeneous catalysis; rhenium oxide; palladium; hydrodeoxygenation; deoxydehydration

Funding

  1. ALCA program of Japan Science and Technology Agency
  2. Grants-in-Aid for Scientific Research [26630404] Funding Source: KAKEN

Ask authors/readers for more resources

The ceria-supported rhenium catalyst modified with palladium (ReOx-Pd/CeO2 (Re = 2 wt %, Pd/Re = 0.25)) is still the best catalyst for simultaneous hydrodeoxygenation. Higher Re loading amount decreased the activity. The simultaneous hydrodeoxygenation of cyclic vicinal diols occurs with high cis-stereoselectivity. ReOx-Pd/CeO2 catalysts were characterized by means of XRD, TEM, H-2-TPR, XAFS, XPS, Raman, and DFT calculations. The Re species on ReOx-Pd/CeO2 (Re = 2 wt %, Pd/Re = 0.25) catalyst after reduction and after stoichiometric reaction of 1,2-hexanediol to 1-hexene were Re-IV and Re-VI, and the Re-IV species were converted to Re-VI through the stoichiometric reaction. The Re species on ReOx-Pd/CeO2 are proposed to be randomly located on the CeO2 surface, and probably only monomeric Re species have catalytic activity for simultaneous hydrodeoxygenation. This model can explain the higher activity of Re = 2 wt % catalyst than those of higher Re loading catalysts. The reaction is proposed to proceed by the tetra/hexavalent redox cycle of the Re center in the catalysis followed by hydrogenation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available