4.8 Article

Reversed Hysteresis during CO Oxidation over Pd75Ag25(100)

Journal

ACS CATALYSIS
Volume 6, Issue 7, Pages 4154-4161

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b00658

Keywords

CO oxidation; Pd(100); Pd75Ag25(100); hysteresis; NAP-XPS; DFT; microkinetic modeling

Funding

  1. Research Council of Norway [138368/V30]
  2. NordForsk [40521]
  3. Swedish Research Council [2011-3532, 621-2014-4708]
  4. Chalmers Area of Advance Nanoscience and Nanotechnology

Ask authors/readers for more resources

CO oxidation over Pd(100) and Pd75Ag25(100) has been investigated by a combination of near-ambient pressure X-ray photoelectron spectroscopy, quadrupole mass spectrometry, density functional theory calculations, and microkinetic modeling. For both surfaces, hysteresis is observed in the CO2 formation during the heating and cooling cycles. Whereas normal hysteresis with light-off temperature higher than extinction temperature is present for Pd(100), reversed hysteresis is observed for Pd75Ag25(100). The reversed hysteresis can be explained by dynamic changes in the surface composition. At the beginning of the heating ramp, the surface is rich in palladium, which gives a CO coverage that poisons the surface until the desorption rate becomes sufficiently high. The thermodynamic preference for an Ag-rich surface in the absence of adsorbates promotes diffusion of Ag from the bulk to the surface as CO desorbs. During the cooling ramp, an appreciable surface coverage is reached at temperatures too low for efficient diffusion of Ag back into the bulk. The high concentration of Ag in the surface leads to a high extinction temperature and, consequently, the reversed hysteresis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available