4.8 Article

Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

Journal

NATURE COMMUNICATIONS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms10922

Keywords

-

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea [NRF-2011-0011392]
  2. Korea CCS R&D Center (KCRC) grant [NRF-2014M1A8A1049256]
  3. Advanced Biomass RD centre [ABC-2015M3A6A2066121]
  4. Global Frontier R&D Program on Center for Hybrid Interface Materials (HIM) - Ministry of Science, ICT & Future Planning [2013M3A6B1078884]
  5. MEST
  6. POSTECH
  7. Alexander von Humboldt Foundation
  8. National Research Foundation of Korea [2014M1A8A1049254, 2013M3A6B1078884, 2015M3A6A2066121, 2016H1A2A1907647, 2011-0011392, 10Z20130011056, 2014M1A8A1049256] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available