4.8 Article

Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates

Journal

NATURE COMMUNICATIONS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms13017

Keywords

-

Funding

  1. Swiss National Science Foundation through its National Centre of Competence in Research MaNEP
  2. Sinergia network Mott Physics Beyond the Heisenberg (MPBH) model
  3. European Community's Seventh Framework Program (FP7) [290605]
  4. ERC Grant [319286]
  5. Canadian funding agency NSERC
  6. Canadian funding agency CRC
  7. Max Planck/UBC center for Quantum Materials
  8. European Research Council (ERC) [319286] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d(8) configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available