4.8 Article

Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks

Journal

NATURE COMMUNICATIONS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms12889

Keywords

-

Funding

  1. EMBO long-term fellowship [ALTF 93-2010]
  2. CRUK programme grant [C6/A11224]
  3. La Ligue Nationale Contre le Cancer
  4. Ligue Nationale Contre le Cancer (Equipe Labellisee)
  5. CRUK [C6/A18796, C6946/A14492]
  6. Wellcome Trust [WT092096]
  7. University of Cambridge
  8. Cancer Research UK [11224, 18796] Funding Source: researchfish

Ask authors/readers for more resources

Repair of single-ended DNA double-strand breaks (seDSBs) by homologous recombination (HR) requires the generation of a 30 single-strand DNA overhang by exonuclease activities in a process called DNA resection. However, it is anticipated that the highly abundant DNA end-binding protein Ku sequesters seDSBs and shields them from exonuclease activities. Despite pioneering works in yeast, it is unclear how mammalian cells counteract Ku at seDSBs to allow HR to proceed. Here we show that in human cells, ATM-dependent phosphorylation of CtIP and the epistatic and coordinated actions of MRE11 and CtIP nuclease activities are required to limit the stable loading of Ku on seDSBs. We also provide evidence for a hitherto unsuspected additional mechanism that contributes to prevent Ku accumulation at seDSBs, acting downstream of MRE11 endonuclease activity and in parallel with MRE11 exonuclease activity. Finally, we show that Ku persistence at seDSBs compromises Rad51 focus assembly but not DNA resection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available