4.8 Article

Efficiency limits for photoelectrochemical water-splitting

Journal

Nature Communications
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms13706

Keywords

-

Funding

  1. Office of Science of the U.S. Department of Energy [DE-SC0004993]

Ask authors/readers for more resources

Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community's focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters-semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance and catalytic exchange current density-to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available