4.8 Article

Giant conductivity switching of LaAlO3/SrTiO3 heterointerfaces governed by surface protonation

Journal

NATURE COMMUNICATIONS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms10681

Keywords

-

Funding

  1. Division Of Materials Research
  2. Direct For Mathematical & Physical Scien [1124131] Funding Source: National Science Foundation
  3. NCI NIH HHS [P30 CA060553] Funding Source: Medline

Ask authors/readers for more resources

Complex-oxide interfaces host a diversity of phenomena not present in traditional semiconductor heterostructures. Despite intense interest, many basic questions remain about the mechanisms that give rise to interfacial conductivity and the role of surface chemistry in dictating these properties. Here we demonstrate a fully reversible 44 order of magnitude conductance change at LaAlO3/SrTiO3 (LAO/STO) interfaces, regulated by LAO surface protonation. Nominally conductive interfaces are rendered insulating by solvent immersion, which deprotonates the hydroxylated LAO surface; interface conductivity is restored by exposure to light, which induces reprotonation via photocatalytic oxidation of adsorbed water. The proposed mechanisms are supported by a coordinated series of electrical measurements, optical/solvent exposures, and X-ray photoelectron spectroscopy. This intimate connection between LAO surface chemistry and LAO/STO interface physics bears far-reaching implications for reconfigurable oxide nanoelectronics and raises the possibility of novel applications in which electronic properties of these materials can be locally tuned using synthetic chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available