4.8 Article

Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD

Journal

NATURE COMMUNICATIONS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms10385

Keywords

-

Funding

  1. the Netherlands Foundation for Fundamental Research on Matter (FOM)
  2. COST action [MP1001 IOTA]
  3. Dutch-French bilateral Van Gogh Programme
  4. Netherlands Organisation for Scientific Research (NWO)
  5. Netherlands Technology Foundation (STW)
  6. SURFsara

Ask authors/readers for more resources

The simplest molecules in nature, molecular hydrogen ions in the form of H-2(+) and HD+, provide an important benchmark system for tests of quantum electrodynamics in complex forms of matter. Here, we report on such a test based on a frequency measurement of a vibrational overtone transition in HD+ by laser spectroscopy. We find that the theoretical and experimental frequencies are equal to within 0.6(1.1) parts per billion, which represents the most stringent test of molecular theory so far. Our measurement not only confirms the validity of high-order quantum electrodynamics in molecules, but also enables the long predicted determination of the proton-to-electron mass ratio from a molecular system, as well as improved constraints on hypothetical fifth forces and compactified higher dimensions at the molecular scale. With the perspective of comparisons between theory and experiment at the 0.01 part-per-billion level, our work demonstrates the potential of molecular hydrogen ions as a probe of fundamental physical constants and laws.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available