4.8 Article

Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

Journal

NATURE COMMUNICATIONS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms12409

Keywords

-

Funding

  1. EPSRC (UK)
  2. Seagate Technology (USA/UK)
  3. Royal Society
  4. Wolfson Foundation
  5. EC FP7 (Marie Curie Actions) [304179]
  6. EPSRC [EP/M028054/1, EP/H000917/2] Funding Source: UKRI
  7. Engineering and Physical Sciences Research Council [EP/M028054/1, EP/H000917/2] Funding Source: researchfish

Ask authors/readers for more resources

Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available