4.1 Article

Use of functional genomics to assess the climate change impact on Aspergillus flavus and aflatoxin production

Journal

WORLD MYCOTOXIN JOURNAL
Volume 9, Issue 5, Pages 665-672

Publisher

WAGENINGEN ACADEMIC PUBLISHERS
DOI: 10.3920/WMJ2016.2049

Keywords

mycotoxins; water activity; temperature; carbon dioxide; transcriptomics

Ask authors/readers for more resources

Aspergillus flavus is an opportunistic and pathogenic fungus that infects several crops of agricultural importance and under certain conditions may produce carcinogenic mycotoxins. Rising global temperatures, disrupted precipitation patterns and increased CO2 levels that are associated with future climate conditions are expected to impact the growth and toxigenic potential of A. flavus. Both laboratory and real world observations have demonstrated this potential, especially when examining the effects of water availability and temperature. Recent experiments have also established that CO2 may also be affecting toxin production. The application of current technologies in the field of functional genomics, including genomic sequencing, RNA-seq, microarray technologies and proteomics have revealed climate change-related, abiotic regulation of the aflatoxin cluster and influence on the plant-fungus interaction. Furthermore, elevated CO2 levels have been shown to impact expression of the aflatoxin biosynthetic regulatory gene aflR. The use of functional genomics will allow researchers to better understand the underlying transcriptomic response within the fungus to climate change, with a view towards predicting changes in fungal infection and toxin production associated with climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available