4.8 Article

Donor-pi-donor type hole transporting materials: marked pi-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency

Journal

CHEMICAL SCIENCE
Volume 7, Issue 9, Pages 6068-6075

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6sc01478j

Keywords

-

Funding

  1. Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [79-130-35-HiCi]
  2. DSR
  3. European Union [604032, 308997]

Ask authors/readers for more resources

Donor-pi-bridge-donor type oligomers (D-pi-D) have been studied intensively as active materials for organic optoelectronic devices. In this study, we introduce three new D-pi-D type organic semiconductors incorporating thiophene or thienothiophene with two electron-rich TPA units, which can be easily synthesized from commercially available materials. A thorough comparison of their optoelectronic and structural properties was conducted, revealing the strong influence of the extent of longitudinal pi-bridge conjugation on both the solid structure of the organic semiconductive materials and their photovoltaic performance when applied as hole transporting materials (HTM) in perovskite solar cells. Single-crystal measurements and time-resolved photoluminescence (TRPL) studies indicate that these coplanar donor-pi-donor type HTMs could be promising alternatives to state-of-the-art spiro-OMeTAD, due to the multiple intermolecular short contacts as charge transporting channels and efficient charge extraction properties from the perovskite layer. The optimized devices with PEH-9 exhibited an impressive PCE of 16.9% under standard global AM 1.5 illumination with minimized hysteretic behaviour, which is comparable to that of devices using spiro-OMeTAD under similar conditions. Ambient stability after 400 h revealed that 93% of the energy conversion efficiency was retained for PEH-9, indicating that the devices had good long-term stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available