4.8 Article

Dual n-type units including pyridine and diphenylphosphine oxide: effective design strategy of host materials for high-performance organic light-emitting diodes

Journal

CHEMICAL SCIENCE
Volume 7, Issue 11, Pages 6706-6714

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6sc01797e

Keywords

-

Funding

  1. National Natural Science Foundation of China [21274016, 21374013, 21421005]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R06]
  3. Program for DUT Innovative Research Team [DUT2016TB12]
  4. Fundamental Research Funds for the Central Universities [DUT15YQ101, DUT16ZD221]

Ask authors/readers for more resources

By using pyridine and diphenylphosphine oxide (DPPO) as dual n-type units, two novel bipolar hosts, namely (5-(3,5-di(9H-carbazol-9-yl) phenyl) pyridin-3-yl) diphenylphosphine oxide (m-PyPOmCP), and (6-(3,5-di(9H-carbazol-9-yl) phenyl) pyridin-3-yl) diphenylphosphine oxide (p-PyPOmCP) are developed for blue and green phosphorescent organic light-emitting diodes (PhOLEDs). Direct linking of the dual n-type units not only pulls the LUMOs down, but also keeps the HOMO levels shallow, and leads to high triplet energies (2.78-2.86 eV) and small singlet-triplet energy differences (0.23-0.35 eV). Blue and green PhOLEDs are fabricated using FIrpic and Ir(ppy)(3) as dopants in the hosts. A low turn-on voltage of 2.6 V is achieved for the green PhOLEDs. The m-PyPOmCP hosted blue PhOLED achieves a high current efficiency of 55.6 cd A(-1) (corresponding to a maximum external quantum efficiency of 25.3% and a power efficiency of 43.6 lm W-1). The p-PyPOmCP hosted green PhOLED exhibits an efficiency of 98.2 cd A(-1) (28.2% and 102.8 lm W-1). These data are among the best values for blue and green PhOLEDs reported so far. These dual n-type units hosts show much better performance than their DPPO-free analogue, clearly proving that the direct linking of DPPO and pyridine as dual n-type units is an effective molecular design strategy for host materials for use in high-performance PhOLEDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available