4.5 Article

Some general remarks on hyperplasticity modelling and its extension to partially saturated soils

Journal

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s00033-016-0646-y

Keywords

Elastoplasticity; Hyperplasticity; Thermodynamics; Unsaturated soils; Dissipation; Energy function; Frozen energy

Ask authors/readers for more resources

The essential ideas and equations of classic plasticity and hyperplasticity are successively recalled and compared, in order to highlight their differences and complementarities. The former is based on the mathematical framework proposed by Hill (The mathematical theory of plasticity. Oxford University Press, Oxford, 1950), whereas the latter is founded on the orthogonality hypothesis of Ziegler (An introduction to thermomechanics. Elsevier, North-Holland, 1983). The main drawback of classic plasticity is the possibility of violating the second principle of thermodynamics, while the relative ease to conjecture the yield function in order to approach experimental results is its main advantage. By opposition, the a priori satisfaction of thermodynamic principles constitutes the chief advantage of hyperplasticity theory. Noteworthy is also the fact that this latter approach allows a finer energy partition; in particular, the existence of frozen energy emerges as a natural consequence from its theoretical formulation. On the other hand, the relative difficulty to conjecture an efficient dissipation function to produce accurate predictions is its main drawback. The two theories are thus better viewed as two complementary approaches. Following this comparative study, a methodology to extend the hyperplasticity approach initially developed for dry or saturated materials to the case of partially saturated materials, accounting for interface energies and suction effects, is developed. A particular example based on the yield function of modified Cam-Clay model is then presented. It is shown that the approach developed leads to a model consistent with other existing works.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available