4.7 Article

Response of the hyporheic zone to transient groundwater fluctuations on the annual and storm event time scales

Journal

WATER RESOURCES RESEARCH
Volume 52, Issue 7, Pages 5301-5321

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015WR018056

Keywords

-

Funding

  1. National Science Foundation's ERIE-IGERT program [0654305]
  2. NSF [EAR 1331906, EAR 1505309]
  3. USDA [2013-67019-21365]
  4. Division Of Earth Sciences
  5. Directorate For Geosciences [1331906] Funding Source: National Science Foundation
  6. Division Of Graduate Education
  7. Direct For Education and Human Resources [0654305] Funding Source: National Science Foundation

Ask authors/readers for more resources

The volume of the water stored in and exchanged with the hyporheic zone is an important factor in stream metabolism and biogeochemical cycling. Previous studies have identified groundwater direction and magnitude as one key control on the volume of the hyporheic zone, suggesting that fluctuation in the riparian water table could induce large changes under certain seasonal conditions. In this study, we analyze the transient drivers that control the volume of the hyporheic zone by coupling the Brinkman-Darcy equation to the Navier-Stokes equations to simulate annual and storm induced groundwater fluctuations. The expansion and contraction of the hyporheic zone was quantified based on temporally dynamic scenarios simulating annual groundwater fluctuations in a humid temperate climate. The amplitude of the groundwater signal was varied between scenarios to represent a range of annual hydrologic forcing. Storm scenarios were then superimposed on the annual scenario to simulate the response to short-term storm signals. Simulations used two different groundwater storm responses; one in-phase with the surface water response and one 14 h out-of-phase with the surface water response to represent our observed site conditions. Results show that annual groundwater fluctuation is a dominant control on the volume of the hyporheic zone, where increasing groundwater fluctuation increases the amount of annual variation. Storm responses depended on the antecedent conditions determined by annual scenarios, where the time of year dictated the duration and magnitude of the storm induced response of the hyporheic zone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available