4.8 Article

Leachate from microplastics impairs larval development in brown mussels

Journal

WATER RESEARCH
Volume 106, Issue -, Pages 364-370

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2016.10.016

Keywords

Plastic pellets; Persistent organic pollutants; Mollusc; Embryo development; Beach; Ecotoxicology

Funding

  1. CNPq [131211/2014-5]

Ask authors/readers for more resources

Microplastic debris is a pervasive type of contaminant in marine ecosystems, being considered a major threat to marine biota. One of the problems of microplastics is that they can adsorb contaminants in extremely high concentrations. When released from the particle, these contaminants have the potential to cause toxic effects in the biota. So far, reports of toxic effects are mostly linked with the direct exposure of organisms through ingestion of contaminated microplastics. There is little information on the toxicity of leachates from microplastics to marine organisms. In this study, we conducted experiments to evaluate the toxicity of leachates from virgin and beached plastic pellets to embryo development of the brown mussel (Perna pema). We compared the efficiency of two test procedures, and evaluated the toxicity of beached pellets collected in a coastal marine protected area. We observed that mussel embryo is sensitive to leachate from both virgin and beached pellets. However, the toxicity of the leachate from beached pellets was much higher than that of virgin pellets. We suggest contaminants adsorbed onto the surface of beached pellets were responsible for the high toxicity of leachate from beached pellets, while the toxicity of leachate from virgin pellets was mainly due to plastic additives. Our results suggest microplastic debris may be harmful even if ingestion is not the only or main pathway of interaction of marine organisms with contaminated plastic debris. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available