4.8 Article

Ozonation of anilines: Kinetics, stoichiometry, product identification and elucidation of pathways

Journal

WATER RESEARCH
Volume 98, Issue -, Pages 147-159

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2016.04.001

Keywords

Ozone; Anilines; Reaction kinetics; Reaction stoichiometry; Transformation products; Reaction mechanism

Ask authors/readers for more resources

Anilines as archetypes for aromatic amines, which play an important role in the production of, e.g., dyestuffs, plastics, pesticides or pharmaceuticals were investigated in their reaction with ozone. Due to their high reactivity towards ozone (1.2 x 10(5)-2.4 x 10(6) M-1 s(-1)) the investigated aniline bearing different substituents are readily degraded in ozonation. However, around 4 to 5 molecules of ozone are needed to yield a successful transformation of aniline, most likely due to a chain reaction that decomposes ozone without compound degradation. This is inferred from OH radical scavenging experiments, in which compound transformation per ozone consumed is increased. Mechanistic considerations based on product formation indicate that addition to the aromatic ring is the preferential reaction in the case of aniline, p-chloroaniline and p-nitroaniline (high amounts of o-hydroxyaniline, p-hydroxyaniline, chloride, nitrite and nitrate, respectively were found). For aniline an addition to the nitrogen happens but to a small extent, since nitroso- and nitrobenzene were observed as well. In the case of N-methylaniline and N,N-dimethylaniline, an electron transfer reaction from nitrogen to ozone was proven due to the formation of formaldehyde. In contrast, for p-methylaniline and p-methoxyaniline the formation of formaldehyde may result from an electron transfer reaction at the aromatic ring. Additional oxidation pathways for all of the anilines under study are reactions of hydroxyl radicals formed in the electron transfer of ozone with the anilines (OH radical yields = 34-59%). These reactions may form aminyl radicals which in the case of aniline can terminate in bimolecular reactions with other compounds such as the determined o-hydroxyaniline by yielding the detected 2-amino-5-anilino-benzochinon-anil. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available