4.7 Article

Application of self-sustaining smouldering combustion for the destruction of wastewater biosolids

Journal

WASTE MANAGEMENT
Volume 50, Issue -, Pages 201-212

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2016.01.037

Keywords

Smouldering combustion; Self-sustaining; Biosolids; Sludge; Wastewater treatment; Waste management

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Savron
  3. Ontario Research Fund from the Ontario Ministry of Research and Innovation
  4. Green way Pollution Control Centre, London, ON

Ask authors/readers for more resources

Managing biosolids, the major by-product from wastewater treatment plants (WWTPs), persists as a widespread challenge that often constitutes the majority of WWTP operating costs. Self-sustained smouldering combustion is a new approach for organic waste treatment, in which the waste - the combustion fuel - is destroyed in an energy efficient manner after mixing it with sand. Smouldering has never been applied to biosolids. Column experiments, using biosolids obtained from a WWTP, were employed to identify if, and under what conditions, smouldering could be used for treating biosolids. The parameter space in which smouldering was self-sustaining was mapped as a function of key system metrics: (1) sand/biosolids mass fraction, (2) biosolids moisture content, and (3) forced air flux. It was found that a self-sustaining reaction is achievable using biosolids with water content as high as 80% (with a biosolids lower heating value greater than 1.6 kJ/g). Moreover, results suggest that operator-controlled air flux can assist in keeping the reaction self-sustaining in response to fluctuations in biosolids properties. This proof-of-concept demonstrates the potential for smouldering as a new energy efficient biosolids disposal method for very wet (i.e., minimally processed) biosolids that may offer WWTPs significant operating cost savings. This study emphasizes smouldering's usefulness as a novel waste management technique. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available