4.5 Article

PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity

Journal

VACCINE
Volume 34, Issue 35, Pages 4263-4269

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.vaccine.2016.05.036

Keywords

Antibodies; PLGA microparticles; Salmonella

Funding

  1. UBS Optimus Foundation
  2. Stanley Thomas Johnson Foundation
  3. Bangeter-Rhyner Foundation
  4. CONACyT

Ask authors/readers for more resources

Salmonella (S.) enterica infections are an important global health problem with more than 20 million individuals suffering from enteric fever annually and more than 200,000 lethal cases per year. Although enteric fever can be treated appropriately with antibiotics, an increasing number of antibiotic resistant Salmonella strains is detected. While two vaccines against typhoid fever are currently on the market, their availability in subtropical endemic areas is limited because these products need to be kept in uninterrupted cold chains. Hence, the development of a thermally stable vaccine that induces mucosal immune responses would greatly improve human health in endemic areas. Here, we have combined the high structural stability of Salmonella typhi outer membrane proteins (porins) with their microencapsulation into poly(lactic-co-glycolic acid) (PLGA) to generate an orally applicable vaccine. Encapsulated porins were protected from acidic degradation and exhibited enhanced immunogenicity following oral administration. In particular, the vaccine elicited strong S. typhi-specific B cell responses in Peyer's patches and mesenteric lymph nodes. In sum, PLGA microencapsulation substantially improved the efficacy of oral vaccination against S. typhi. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available