4.7 Article

Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm

Journal

ADVANCES IN WATER RESOURCES
Volume 82, Issue -, Pages 106-123

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.advwatres.2015.04.008

Keywords

Groundwater; Integrated modeling; Multi-model regression

Funding

  1. National Science Foundation through its Climate Change Water and Society (CCWAS) Integrated Graduate Education and Research Traineeship (IGERT) program [DGE-1069333]

Ask authors/readers for more resources

Spatial patterns in the physical controls of groundwater depth and flux are assessed quantitatively using results from a first of its kind, integrated groundwater surface water simulation over the majority of the contiguous US. We apply a novel, k-regression algorithm to the simulated system to simultaneously identify spatial subsets of grid cells with similar relationships between explanatory variables and groundwater metrics while quantifying behavior using multiple linear regression. The combination of this statistical approach with the results of a large-scale, high-resolution groundwater simulation allows us to evaluate the ability to represent complex groundwater behavior with simple linear models across an unprecedented range of climates and physical settings. In almost all of the eight major basins considered, we identify at least some areas where the coefficient of determination for the linear regression model is larger than 0.7, and in many cases this is achieved for more than 50% of the total basin area. In general, we show that water table depth is most strongly related to location within a basin and slope, while conductivity and recharge are more important predictors for groundwater flux metrics. Results also illustrate spatial variability in these relationships; further demonstrating the historic difficulty in developing spatially contiguous classifications of groundwater behavior. This work highlights the potential to combine new statistical techniques with integrated hydrologic models to help improve our understanding of complex heterogeneous systems. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available