4.7 Article

Numerical simulation of air ventilation in super-large underground developments

Journal

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY
Volume 52, Issue -, Pages 38-43

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tust.2015.11.009

Keywords

Ventilation; Super-large underground development; Carbon monoxide; Dust

Funding

  1. University of Queensland

Ask authors/readers for more resources

Recent advancements in engineering technology have enabled the construction of super-large underground engineering projects in China. Currently, the ventilation requirements and standards of normal-size underground spaces are used for super-large underground excavating engineering projects in China. For example, the minimum air velocity of 0.15 mks is the standard velocity for normal-size underground spaces; however, this value is also used as the required air velocity for diluting underground contaminants in super-large underground developments. This paper aims to examine the minimum ventilation requirements for super-large underground developments (S > 100 m(2)). A three-dimensional computational domain representing a full-scale underground space has been developed. The pertinent parameters such as dust concentration, smoke density, oxygen concentration and air temperature have been simulated. The results show that at some specific underground conditions, the ventilation air velocity of 0.15 m/s is sufficient to control the dust level, provide required oxygen concentration and maintain the air temperature at acceptable levels during development; however, it is not sufficient to bring the CO concentration below an acceptable safe limit. This must be considered by the ventilation system designers of super-large underground developments. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available