4.7 Article

Prognostic Impact of Novel Molecular Subtypes of Small Intestinal Neuroendocrine Tumor

Journal

CLINICAL CANCER RESEARCH
Volume 22, Issue 1, Pages 250-258

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-15-0373

Keywords

-

Categories

Funding

  1. Cancer Research UK
  2. National Institute for Health Research through the UCL Experimental Cancer Medicine Centre
  3. National Institute for Health Research through the UCL Hospitals Biomedical Research Centre
  4. Raymond and Beverly Sackler Foundation
  5. Royal Society [WM100023]
  6. EU [257082, 282510]
  7. Cancer Research UK [12183] Funding Source: researchfish

Ask authors/readers for more resources

Purpose: Small intestinal neuroendocrine tumors (SINET) are the commonest malignancy of the small intestine; however, underlying pathogenic mechanisms remain poorly characterized. Whole-genome and -exome sequencing has demonstrated that SINETs are mutationally quiet, with the most frequent known mutation in the cyclin-dependent kinase inhibitor 1B gene (CDKN1B) occurring in only similar to 8% of tumors, suggesting that alternative mechanisms may drive tumorigenesis. The aim of this study is to perform genome-wide molecular profiling of SINETs in order to identify pathogenic drivers based on molecular profiling. This study represents the largest unbiased integrated genomic, epigenomic, and transcriptomic analysis undertaken in this tumor type. Experimental Design: Here, we present data from integrated molecular analysis of SINETs (n = 97), including whole-exome or targeted CDKN1B sequencing (n = 29), HumanMethylation450 BeadChip (Illumina) array profiling (n = 69), methylated DNA immunoprecipitation sequencing (n = 16), copy-number variance analysis (n = 47), and Whole-Genome DASL (Illumina) expression array profiling (n = 43). Results: Based on molecular profiling, SINETs can be classified into three groups, which demonstrate significantly different progression-free survival after resection of primary tumor (not reached at 10 years vs. 56 months vs. 21 months, P = 0.04). Epimutations were found at a recurrence rate of up to 85%, and 21 epigenetically dysregulated genes were identified, including CDX1 (86%), CELSR3 (84%), FBP1 (84%), and GIPR (74%). Conclusions: This is the first comprehensive integrated molecular analysis of SINETs. We have demonstrated that these tumors are highly epigenetically dysregulated. Furthermore, we have identified novel molecular subtypes with significant impact on progression-free survival. (C)2015 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available