4.7 Article

The MEK1/2 Inhibitor Pimasertib Enhances Gemcitabine Efficacy in Pancreatic Cancer Models by Altering Ribonucleotide Reductase Subunit-1 (RRM1)

Journal

CLINICAL CANCER RESEARCH
Volume 21, Issue 24, Pages 5563-5577

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-15-0485

Keywords

-

Categories

Funding

  1. EMD Serono
  2. Cancer Research UK Programme Grant [C2259/A16569]
  3. Cancer Research UK [16569] Funding Source: researchfish

Ask authors/readers for more resources

Purpose: Gemcitabine, a nucleoside analogue, is an important treatment for locally advanced and metastatic pancreatic ductal adenocarcinoma (PDAC) but provides only modest survival benefit. Targeting downstream effectors of the RAS/ERK signaling pathway by direct inhibition of MEK1/2 proteins is a promising therapeutic strategy, as aberrant activation of this pathway occurs frequently in PDAC. In this study, the ability of pimasertib, a selective allosteric MEK1/2 inhibitor, to enhance gemcitabine efficacy was tested and the molecular mechanism of their interaction was investigated. Experimental Design: Cell survival and apoptosis were assessed by MTT and Caspase 3/7 Glo assays in human pancreatic cancer cell lines. Protein expression was detected by immuno-blotting. The in vivo sensitivity of gemcitabine with pimasertib was evaluated in an orthotopic model of pancreatic tumor. Results: Synergistic activity was observed when gemcitabine was combined sequentially with pimasertib, in human pancreatic cancer cells. In particular, pimasertib reduced ribonucleotide reductase subunit 1 (RRM1) protein, and this was associated with sensitivity to gemcitabine. Pretreatment with MG132 impaired reduction of RRM1 protein induced by pimasertib, suggesting that RRM1 is degraded posttranslationally. Immunoprecipitation indicated enhanced MDM2-mediated polyubiquitination of RRM1 through Lys-48-mediated linkage following pimasertib treatment, an effect mediated, in part, by AKT. Finally, the combination treatment with pimasertib and gemcitabine caused significant tumor growth delays in an orthotopic pancreatic cancer model, with RRM1 downregulation in pimasertib-treated mice. Conclusions: These results confirm an important role of RRM1 in gemcitabine response and indicate MEK as a potential target to sensitize gemcitabine therapy for PDAC. (C) 2015 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available