4.7 Article

Targeting Glutamine Metabolism in Breast Cancer with Aminooxyacetate

Journal

CLINICAL CANCER RESEARCH
Volume 21, Issue 14, Pages 3263-3273

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-14-1200

Keywords

-

Categories

Funding

  1. Department of Defense Center of Excellence [W81XWH-04-1-0595]
  2. Susan Komen Foundation for the Cure Postdoctoral grant [PDF12231403]
  3. Cindy Rosencrans Fund for Triple-Negative Breast Cancer Research
  4. SKCCC Core grant [P30 CA006973]

Ask authors/readers for more resources

Purpose: Glutamine addiction in c-MYC-overexpressing breast cancer is targeted by the aminotransferase inhibitor, aminooxyacetate (AOA). However, the mechanism of ensuing cell death remains unresolved. Experimental Design: A correlation between glutamine dependence for growth and c-MYC expression was studied in breast cancer cell lines. The cytotoxic effects of AOA, its correlation with high c-MYC expression, and effects on enzymes in the glutaminolytic pathway were investigated. AOA-induced cell death was assessed by measuring changes in metabolite levels by magnetic resonance spectroscopy (MRS), the effects of amino acid depletion on nucleotide synthesis by cell-cycle and bromodeoxyuridine (BrdUrd) uptake analysis, and activation of the endoplasmic reticulum (ER) stress-mediated pathway. Antitumor effects of AOA with or without common chemotherapies were determined in breast cancer xenografts in immunodeficient mice and in a transgenic MMTV-rTtA-TetO-myc mouse mammary tumor model. Results: We established a direct correlation between c-MYC overexpression, suppression of glutaminolysis, and AOA sensitivity in most breast cancer cells. MRS, cell-cycle analysis, and BrdUrd uptake measurements indicated depletion of aspartic acid and alanine leading to cell-cycle arrest at S-phase by AOA. Activation of components of the ER stress-mediated pathway, initiated through GRP78, led to apoptotic cell death. AOA inhibited growth of SUM159, SUM149, and MCF-7 xenografts and c-myc-overexpressing transgenic mouse mammary tumors. In MDA-MB231, AOA was effective only in combination with chemotherapy. Conclusions: AOA mediates its cytotoxic effects largely through the stress response pathway. The preclinical data of AOA's effectiveness provide a strong rationale for further clinical development, particularly for c-MYC-overexpressing breast cancers. (C) 2015 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available