4.7 Article

MEK plus PI3K/mTORC1/2 Therapeutic Efficacy Is Impacted by TP53 Mutation in Preclinical Models of Colorectal Cancer

Journal

CLINICAL CANCER RESEARCH
Volume 21, Issue 24, Pages 5499-5510

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-14-3091

Keywords

-

Categories

Funding

  1. FIS Grant [PI09/00623, RD06/0020/0075]
  2. Banco Bilbao Vizcaya Argentaria (BBVA) Foundation
  3. Instituto de Salud Carlos III (ISCIII) grant [FIS PI13/01714]
  4. GHD/FERO Grant
  5. FP7-HEALTH COLTHERES grant
  6. Instituto de Salud Carlos III grant [PI11/00917]
  7. AIRC (Associazione Italiana per la Ricerca sul Cancro) Investigator Grant [14205]
  8. AIRC Special Program Molecular Clinical Oncology 5 x 1000, project [9970]
  9. AACR, American Association for Cancer Research - Fight Colorectal Cancer Career Development Award
  10. AIRC Investigator Grant [15571]
  11. La Caixa International Program for Cancer Research Education

Ask authors/readers for more resources

Purpose: PI3K pathway activation occurs in concomitance with RAS/BRAF mutations in colorectal cancer, limiting the sensitivity to targeted therapies. Several clinical studies are being conducted to test the tolerability and clinical activity of dual MEK and PI3K pathway blockade in solid tumors. Experimental Design: In the present study, we explored the efficacy of dual pathway blockade in colorectal cancer preclinical models harboring concomitant activation of the ERK and PI3K pathways. Moreover, we investigated if TP53 mutation affects the response to this therapy. Results: Dual MEK and mTORC1/2 blockade resulted in synergistic antiproliferative effects in cell lines bearing alterations in KRAS/BRAF and PIK3CA/PTEN. Although the on-treatment cell-cycle effects were not affected by the TP53 status, a marked proapoptotic response to therapy was observed exclusively in wild-type TP53 colorectal cancer models. We further interrogated two independent panels of KRAS/BRAF- and PIK3CA/PTEN-altered cell line-and patient-derived tumor xenografts for the antitumor response toward this combination of agents. A combination response that resulted in substantial antitumor activity was exclusively observed among the wild-type TP53 models (two out of five, 40%), but there was no such response across the eight mutant TP53 models (0%). Interestingly, within a cohort of 14 patients with colorectal cancer treated with these agents for their metastatic disease, two patients with long-lasting responses (32 weeks) had TP53 wild-type tumors. Conclusions: Our data support that, in wild-type TP53 colorectal cancer cells with ERK and PI3K pathway alterations, MEK blockade results in potent p21 induction, preventing apoptosis to occur. In turn, mTORC1/2 inhibition blocks MEK inhibitor-mediated p21 induction, unleashing apoptosis. (C) 2015 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available