4.7 Article

Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: A case study of Beijing, China

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trc.2016.02.003

Keywords

Electric vehicle; Facility location model; p-median model; Maximal covering location model; Optimisation; Set covering model

Funding

  1. Chinese University of Hong Kong [3132573]
  2. Research Grants Council of the Hong Kong Special Administrative Region, China [414313]
  3. Microsoft Research Asia Collaborative Research Fund

Ask authors/readers for more resources

In this paper, we present a case study on planning the locations of public electric vehicle (EV) charging stations in Beijing, China. Our objectives are to incorporate the local constraints of supply and demand on public EV charging stations into facility location models and to compare the optimal locations from three different location models. On the supply side, we analyse the institutional and spatial constraints in public charging infrastructure construction to select the potential sites. On the demand side, interviews with stakeholders are conducted and the ranking-type Delphi method is used when estimating the EV demand with aggregate data from municipal statistical yearbooks and the national census. With the estimated EV demand, we compare three classic facility location models - the set covering model, the maximal covering location model, and the p-median model - and we aim to provide policy-makers with a comprehensive analysis to better understand the effectiveness of these traditional models for locating EV charging facilities. Our results show that the p-median solutions are more effective than the other two models in the sense that the charging stations are closer to the communities with higher EV demand, and, therefore, the majority of EV users have more convenient access to the charging facilities. From the experiments of comparing only the p-median and the maximal covering location models, our results suggest that (1) the p-median model outperforms the maximal covering location model in terms of satisfying the other's objective, and (2) when the number of charging stations to be built is large, or when minor change is required, the solutions to both models are more stable as p increases. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available