4.7 Article

A disjunctive convex programming approach to the pollution-routing problem

Journal

TRANSPORTATION RESEARCH PART B-METHODOLOGICAL
Volume 94, Issue -, Pages 61-79

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trb.2016.09.006

Keywords

Pollution-routing problem; Speed optimization; Green transportation; Mixed-integer convex programming

Ask authors/readers for more resources

The pollution-routing problem (PRP) aims to determine a set of routes and speed over each leg of the routes simultaneously to minimize the total operational and environmental costs. A common approach to solve the PRP exactly is through speed discretization, i.e., assuming that speed over each arc is chosen from a prescribed set of values. In this paper, we keep speed as a continuous decision variable within an interval and propose new formulations for the PRP. In particular, we build two mixed-integer convex optimization models for the PRP, by employing tools from disjunctive convex programming. These are the first arc-based formulations for the PRP with continuous speed. We also derive several families of valid inequalities to further strengthen both models. We test the proposed formulations on benchmark instances. Some instances are solved to optimality for the first time. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available