4.7 Article

Methionine Deprivation Induces a Targetable Vulnerability in Triple-Negative Breast Cancer Cells by Enhancing TRAIL Receptor-2 Expression

Journal

CLINICAL CANCER RESEARCH
Volume 21, Issue 12, Pages 2780-2791

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-14-2792

Keywords

-

Categories

Funding

  1. Breast Cancer Research Foundation
  2. Susan G. Komen for the Cure Postdoctoral Fellowship Award
  3. University of Wisconsin Comprehensive Cancer Center core facility [P30CA-14520]

Ask authors/readers for more resources

Purpose: Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Experimental Design: Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab, or the combination. Results: Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Conclusions: Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. (C) 2015 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available