4.2 Article

Red blood cells with elevated cytoplasmic Ca2+ are primarily taken up by splenic marginal zone macrophages and CD207+dendritic cells

Journal

TRANSFUSION
Volume 56, Issue 7, Pages 1834-1844

Publisher

WILEY
DOI: 10.1111/trf.13612

Keywords

-

Categories

Funding

  1. Swedish Research Council [2012-2702]
  2. Faculty of Medicine Foundations at Umea University

Ask authors/readers for more resources

BACKGROUNDThe normal red blood cell (RBC) life span may be significantly reduced when RBCs are stored under blood bank conditions, resulting in a reduced 24-hour survival after transfusion. The damage of stored RBCs is probably multifactorial as stored RBCs share features of both senescence and suicidal RBC death (eryptosis). Since an increased intracellular Ca2+ concentration ([Ca2+](i)) is one key feature of eryptosis, we here investigated if stored human RBCs had increased [Ca2+](i) and the mechanisms behind uptake of such RBCs in a murine model. STUDY DESIGN AND METHODSThe intracellular Ca2+ content of RBCs was determined using the Ca2+ probe Fluo-3 and flow cytometry. In vivo uptake of Ca2+ ionophore-treated murine RBCs (Ca2+-RBCs) was investigated in recipient mice, using flow cytometry and immunohistochemical analysis. RESULTSA small fraction of human RBCs accumulated [Ca2+](i) during storage for up to 42 days under blood bank conditions. In a murine model, where fresh or Ca2+-RBCs were transfused, Ca2+-RBCs were mainly trapped by MARCO+ splenic marginal zone macrophages and CD11c+ CD207+ dendritic cells (DCs) within 1 hour after transfusion. In marked contrast, freshly transfused RBCs aging normally in circulation were cleared much slower and preferentially by F4/80+ red pulp macrophages. CD47 on the Ca2+-RBCs did not affect their clearance by splenic phagocytic cells. CONCLUSIONSA small fraction of RBCs accumulate [Ca2+](i) during storage, and in a murine model such RBCs are recognized by splenic macrophages and DCs in ways similar to what has been reported for nucleated apoptotic cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available