4.2 Article

Evaluation of an in vitro screening model to assess phosgene inhalation injury

Journal

TOXICOLOGY MECHANISMS AND METHODS
Volume 27, Issue 1, Pages 45-51

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/15376516.2016.1243183

Keywords

Phosgene; transepithelial electrical resistance; in vitro models; energy metabolism; pulmonary injury

Categories

Funding

  1. NIH/NIAID [Y1-A1-6179-02]
  2. USAMRICD [Y1-A1-6179-02]

Ask authors/readers for more resources

Therapeutic development against exposure to toxic gases is hindered by the lack of appropriate models to evaluate candidate compounds prior to animal efficacy studies. In this study, an in vitro, air-liquid interface exposure model has been tested to examine its potential application for screening treatments for phosgene (carbonyl chloride)-induced pulmonary injury. Epithelial cultures on Transwell (R) inserts, combined with a Vitrocell (R) exposure apparatus, provided a physiologically relevant exposure environment. Differentiated human bronchial epithelial (16HBE) cultures were exposed for 8min to phosgene ranging from 0 to 64ppm and assessed for changes in transepithelial electrical resistance (TEER, epithelial barrier integrity), cellular viability (XTT) and post-exposure (PE) cellular metabolic energy status. Exposure to phosgene concentrations >= 8ppm caused dose-dependent and significant decreases in TEER and XTT which did not recover within 24-h PE. In addition, at 64ppm the rate of oxidative glutamine metabolism was significantly inhibited at 6 and 24h after exposure. Glycolytic activities (glucose utilization and lactate production) were also inhibited, but to a lesser extent. Decreased glycolytic function can translate to insufficient energy sources to counteract barrier function failure. Consistent and sensitive markers of phosgene exposure were TEER, cell viability and decreased metabolism. As such, we have assessed an appropriate in vitro model of phosgene inhalation that produced quantifiable alterations in markers of lung cell metabolism and injury in human airway epithelial cells. Data indicate the suitability of this model for testing classes of anti-edemagenic compounds such as corticosteroids or phosphodiesterase inhibitors for evaluating phosgene therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available