4.6 Article

Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 297, Issue -, Pages 41-55

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2016.02.017

Keywords

Fine particulate matter; Eosinophilia; Th2 immune response; Microbial element; PM2.5; M2 macrophages

Funding

  1. Global Environment Research Fund of the Ministry of the Environment Japan [5-1457]
  2. National Nature Science Foundation of China [81302403]

Ask authors/readers for more resources

The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples-urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of beta-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/c mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80(+) CD11b(+) cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80(+) CD11b(+) cells (M2 macrophages) in lung tissue was higher in the OVA + ASD-PM2.5 treated mice than in the OVA + U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (beta-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available