4.6 Article

Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 296, Issue -, Pages 61-72

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2016.02.011

Keywords

Desert dust; TLR deficiency; MyD88 deficiency; Asthma

Funding

  1. Global Environment Research Fund of the Ministry of the Environment Japan [5-1457]

Ask authors/readers for more resources

Asian sand dust (ASD) is known to exacerbate asthma, although its mechanism is not yet well understood. In this study, when the effects on inflammatory response by LPS present in ASD was investigated by measuring the gene expression of cytokines and chemokines in RAW264.7 cells treated with ASD and/or polymyxin B (PMB), the ASD effects were attenuated by PMB, but not completely. When an in vitro study was performed using bone marrow-derived macrophages (BMDMs) from WT, TLR2(-/-), TLR4(-/-), and MyD88(-/-) BALB/c mice and BMDMs from WT, TLR2(-/-), TLR4(-/-), TLR2/4(-/-), TLR7/9(-/-), and MyD88(-/-) C57BL/6J mice, cytokine (1-6, IL-12) production in BMDMs was higher in ASD-stimulated TLR2(-/-) cells than in TLR4(-/-) cells, whereas it was lower or undetectable in TLR2/4(-/-) and MyD88(-/-) cells. These results suggest that ASD causes cytokine production predominantly in a TLR4/MyD88-dependent pathway. When WT and TLRs 2(-/-), 4(-/-), and MyD88(-/-) BALB/c mice were intratracheally challenged with OVA and/or ASD, ASD caused exacerbation of lung eosinophilia along with Th2 cytokine and eosinophil-relevant chemokine production. Serum OVA-specific IgE and IgG1 similar to WT was observed in TLRs 2(-/-), 4(-/-) mice, but not in MyD88(-/-) mice. The Th2 responses in TLR2(-/-) mice were attenuated remarkably by PMB. These results indicate that ASD exacerbates lung eosinophilia in a MyD88-dependent pathway. TLRs 2 and 4 signaling may be important in the increase in lung eosinophilia. Also, the TLR4 ligand LPS and TLR2 ligand like beta-glucan may be strong candidates for exacerbation of lung eosinophilia. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available