4.3 Article

CCN2 and CCN5 exerts opposing effect on fibroblast proliferation and transdifferentiation induced by TGF-

Journal

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY
Volume 42, Issue 11, Pages 1207-1219

Publisher

WILEY
DOI: 10.1111/1440-1681.12470

Keywords

CCN2; CCN5; epidural scar; fibroblasts; proliferation; transdifferentiation

Ask authors/readers for more resources

Epidural fibrosis might occur after lumbar discectomy and contributes to failed back syndrome. Transforming growth factor (TGF)- has been reported to influence multiple organ fibrosis, in which connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed 2 (CCN2) and CCN5 are involved. However, the effect of CCN2 and CCN5 on TGF- induced fibrosis has not yet been elucidated. This study reports that CCN2 and CCN5 play opposing roles in cell proliferation and transdifferentiation of human skin fibroblasts or rabbit epidural scar-derived fibroblasts exposed to TGF-. We observed that TGF-1 induced fibroblasts proliferation and differentiation in a dose-dependent manner (from 0g/L to 20g/L). Meanwhile, CCN2 expression is up-regulated while CCN5 expression is inhibited by TGF-1 exposure. Furthermore, it is demonstrated that CCN2 overexpression leads to promoted proliferation and elevated collagen and -smooth muscle actin (-SMA) expression, which are inhibited by CCN5 overexpression. Moreover, it is shown that the cysteine knot (CT) domain, present in CCN2 but absent in CCN5, plays an essential part in fibroblast proliferation and differentiation. Additionally, enhanced TGF- and CCN2 expression but decreased CCN5 expression is found in rabbit epidural scar-derived fibroblasts. Overall, the results show the opposing effects of CCN2 and CCN5 on fibroblast proliferation and transdifferentiation induced by TGF-.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available