4.7 Article

Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin

Journal

TALANTA
Volume 147, Issue -, Pages 63-68

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2015.09.033

Keywords

Trypsin; Chemiluminescence; Resonance energy transfer; Gold nanoclusters

Funding

  1. Fundamental Research Funds for the Central Universities [xjj2015121]

Ask authors/readers for more resources

A chemiluminescence resonance energy transfer (CRET) platform was developed for sensitive and label-free detection of protease by using trypsin as a model analyte. In this CRET platform, bis(2,4,6-trichlorophenyl)oxalate-hydrogen peroxide chemiluminescence (CL) reaction was utilized as an energy donor and bovine serum albumin (BSA)-stabilized gold nanoclusters (Au NCs) as an energy acceptor. The BSA-stabilized Au NCs triggered the CRET phenomenon by accepting the energy from TCPO-H2O2 CL reaction, thus producing intense CL. In the presence of trypsin, the protein template of BSA-stabilized Au NCs was digested, which frustrated the energy transfer efficiency between the CL donor and the BSA-stabilized Au NCs, leading to a significant decrease in the CL signal. The decreased CL signal was proportional to the logarithm of trypsin concentration in the range of 0.01-50.0 mu g mL(-1). The detection limit for trypsin was 9 ng mL(-1) and the relative standard deviations were lesser than 3% (n=11). This Au NCs-based CRET platform was successfully applied to the determination of trypsin in human urine samples, demonstrating its potential application in clinical diagnosis. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available