4.7 Article

Mass spectrometric phosphoproteome analysis of small-sized samples of human neutrophils

Journal

CLINICA CHIMICA ACTA
Volume 451, Issue -, Pages 199-207

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cca.2015.09.030

Keywords

Extracellular signal-regulated kinase 1/2; TiO2-MOAC enrichment; Neutrophil; Phosphoproteomics; Protein degradation; Protease inhibition

Funding

  1. Red Cross Blood Donation Service West, Hagen
  2. Germany
  3. Deutsche Forschungsgemeinschaft [GR 2232/7-1, GRK1870/1]

Ask authors/readers for more resources

Background: Global analysis of stimulus-dependent changes in the neutrophil phosphoproteome will improve the understanding of neutrophil signal transduction and function in diverse disease settings. However, gel-free phosphoproteomics of neutrophils in clinical studies is hampered by limited sample amounts and requires protein extract stability, efficient tryptic digestion and sensitive phosphopeptide enrichment in a protease-rich environment. For development of an appropriate workflow, we assessed neutrophil protein stability in urea-based lysis buffers and determined feasibility of gel-free phosphoproteomic analyses using polymer-based metal ion affinity capture (PolyMAC). Methods: Western blotting, phosphopeptide enrichment and mass spectrometric analyses of samples of neutrophils were performed. Results: Degradation of proteins in neutrophil extracts was observed after preparation with a urea-containing lysis buffer and could be prevented by addition of highly concentrated protease inhibitors. Subsequent tryptic digestion and PolyMAC-based phosphopeptide enrichment proved efficient with accordingly prepared neutrophil samples. Applying the new workflow, formyl-methionyl-leucyl-phenylalanine-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was detected after gel-free and gel-based phosphoproteomic analyses as proof of principle from 20 ml of whole blood. Furthermore, phosphorylation of other ERK1/2 pathway-associated proteins was monitored. Conclusion: We provide a workflow for efficient, gel-free phosphoproteome analyses with small-sized neutrophil samples, suitable for application in clinical studies. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available