4.5 Article

Sensitivity of lake thermal and mixing dynamics to climate change

Journal

CLIMATIC CHANGE
Volume 129, Issue 1-2, Pages 295-305

Publisher

SPRINGER
DOI: 10.1007/s10584-015-1326-1

Keywords

-

Funding

  1. National Science Foundation
  2. U.S. Environmental Protection Agency, Office of Research and Development

Ask authors/readers for more resources

Warming-induced changes in lake thermal and mixing regimes present risks to water quality and ecosystem services provided by U.S. lakes and reservoirs. Modulation of responses by different physical and hydroclimatic settings are not well understood. We explore the potential effects of climate change on 27 lake archetypes representative of a range of lakes and reservoirs occurring throughout the U.S. Archetypes are based on different combinations of depth, surface area, and water clarity. LISSS, a one-dimensional dynamic thermal simulation model, is applied to assess lake response to multiple mid-21st century change scenarios applied to nine baseline climate series from different hydroclimatic regions of the U.S. Results show surface water temperature increases of about 77 % of increase in average air temperature change. Bottom temperature changes are less (around 30 %) for deep lakes and in regions that maintain mid-winter air temperatures below freezing. Significant decreases in length of ice cover are projected, and the extent and strength of stratification will increase throughout the U.S., with systematic differences associated with depth, surface area, and clarity. These projected responses suggest a range of future challenges that lake managers are likely to face. Changes in thermal and mixing dynamics suggest increased risk of summer hypoxic conditions and cyanobacterial blooms. Increased water temperatures above the summer thermocline could be a problem for cold water fisheries management in many lakes. Climate-induced changes in water balance and mass inputs of nutrients may further exacerbate the vulnerability of lakes to climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available