4.7 Article

Actin Organization in Cells Responding to a Perforated Surface, Revealed by Live Imaging and Cryo-Electron Tomography

Journal

STRUCTURE
Volume 24, Issue 7, Pages 1031-1043

Publisher

CELL PRESS
DOI: 10.1016/j.str.2016.05.004

Keywords

-

Funding

  1. German Science Foundation Excellence Cluster for Integrated Protein Science Munich (CIPSM)

Ask authors/readers for more resources

In a 3D environment, motile cells accommodate their protruding and retracting activities to geometrical cues. Dictyostelium cells migrating on a perforated film explored its holes by forming actin rings around their border and extending protrusions through the free space. The response was initiated when an actin wave passed a hole, and the rings persisted only in the PIP3-rich territories surrounded by a wave. To reconstruct actin structures from cryo-electron tomograms, actin rings were identified by cryo-correlative light and electron microscopy, and thin wedges of relevant regions were obtained by cryo-focused ion-beam milling. Retracting stages were distinguished from protruding ones by the accumulation of myosin-II. Early actin rings consisted of filaments pointing upright from the membrane, entangled with a meshwork of filaments close to the membrane. Branches identified at later stages suggested that formin-based nucleation of filaments was followed by Arp2/3-mediated network stabilization, which prevented buckling of the force-generating filaments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available