4.7 Article

Sequential importance sampling for structural reliability analysis

Journal

STRUCTURAL SAFETY
Volume 62, Issue -, Pages 66-75

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.strusafe.2016.06.002

Keywords

Reliability analysis; Simulation method; Importance sampling; MCMC; High dimensions

Ask authors/readers for more resources

This paper proposes the application of sequential importance sampling (SIS) to the estimation of the probability of failure in structural reliability. SIS was developed originally in the statistical community for exploring posterior distributions and estimating normalizing constants in the context of Bayesian analysis. The basic idea of SIS is to gradually translate samples from the prior distribution to samples from the posterior distribution through a sequential reweighting operation. In the context of structural reliability, SIS can be applied to produce samples of an approximately optimal importance sampling density, which can then be used for estimating the sought probability. The transition of the samples is defined through the construction of a sequence of intermediate distributions. We present a particular choice of the intermediate distributions and discuss the properties of the derived algorithm. Moreover, we introduce two MCMC algorithms for application within the SIS procedure; one that is applicable to general problems with small to moderate number of random variables and one that is especially efficient for tackling high-dimensional problems. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available