4.5 Article

Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells

Journal

STEM CELLS AND DEVELOPMENT
Volume 25, Issue 23, Pages 1808-1817

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2016.0222

Keywords

cell signaling; chondrogenesis; differentiation; MSC

Funding

  1. Dutch Arthritis Foundation (Reumafonds) [11-1-408]

Ask authors/readers for more resources

Hypertrophic differentiation occurs during in vitro chondrogenesis of mesenchymal stem cells (MSCs), decreasing the quality of the cartilage construct. Previously we identified WNT pathway antagonists Dickkopf 1 homolog (DKK1) and frizzled-related protein (FRZB) as key factors in blocking hypertrophic differentiation of human MSCs (hMSCs). In this study, we investigated the role of endogenously expressed DKK1 and FRZB in chondrogenesis of hMSC and chondrocyte redifferentiation and in preventing cell hypertrophy using three relevant human cell based systems, isolated hMSCs, isolated primary human chondrocytes (hChs), and cocultures of hMSCs with hChs for which we specifically designed neutralizing nano-antibodies. We selected and tested variable domain of single chain heavy chain only antibodies (VHH) for their ability to neutralize the function of DKK1 or FRZB. In the presence of DKK1 and FRZB neutralizing VHH, glycosaminoglycan and collagen type II staining were significantly reduced in monocultured hMSCs and monocultured chondrocytes. Furthermore, in cocultures, cells in pellets showed hypertrophic differentiation. In conclusion, endogenous expression of the WNT antagonists DKK1 and FRZB is necessary for multiple steps during chondrogenesis: first DKK1 and FRZB are indispensable for the initial steps of chondrogenic differentiation of hMSCs, second they are necessary for chondrocyte redifferentiation, and finally in preventing hypertrophic differentiation of articular chondrocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available